
30

Copyright © 2023, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

DOI: 10.4018/978-1-6684-8088-5.ch003

Transforming Next
Generation-Based

Artificial Intelligence for
Software Development:

Current Status, Issues, Challenges,
and Future Opportunities

Atharva Deshmukh
 https://orcid.org/0000-0002-8039-3523

Department of Computer Engineering, Terna Engineering College, India

Disha Sunil Patil
Northeastern University, USA

J. S. Shyam Mohan
 https://orcid.org/0000-0003-4521-3088

GITAM University, India

G. Balamurugan
 https://orcid.org/0000-0002-5676-5235

Department of Computing Technologies SRM Institute of Science and
Technology, Kattankulathur, India

Amit Kumar Tyagi
 https://orcid.org/0000-0003-2657-8700

National Institute of Fashion Technology, New Delhi, India

https://orcid.org/0000-0002-8039-3523
https://orcid.org/0000-0003-4521-3088
https://orcid.org/0000-0002-5676-5235
https://orcid.org/0000-0003-2657-8700

Copyright © 2023, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 31

Next Generation-Based AI for Software Development

1. INTRODUCTION

Conventional software development, which involves a number of steps such as
preparing requirements, manually writing code, testing and designing software to
ensure that the final product fulfils specifications, is not designed to accommodate
modifications. Artificial intelligence (AI) is upending this process by enabling
efficient and scalable practices that shorten time-to-market and boost productivity.
Whereas several software firms have been in the early stages of AI implementation,
the technology’s adoption is progressively increasing across the spectrum. As per
market research company Tractica, revenue from the use of AI technologies would
reach $119 billion globally by 2025. It’s important to note that artificial intelligence
(AI) is not a substitute for human intelligence (HI). AI is constantly learning and
delivering human interactions, all while saving time for software development
teams by removing human mistakes in redundant operations. We are certain that AI
with Software Development would strengthen development, agile test automation,
automation-testing software, and the way RPA bots work with the help of the software
as a result of this progress. Artificial intelligence (AI) tools are developed to ensure
software development is more dependable, faster, and easier. The following are a
few examples of AI’s potential applications in software development:

• Requirement Gathering: As a conceptual stage of the SDLC (Software
Development Life Cycle), requirement gathering necessitates the highest
level of human involvement. Artificial Intelligence (AI) uses a variety of
methodologies and technologies, such as Google ML Kit and Infosys Nia,
to automate processes and reduce human participation to some level. Before

ABSTRACT

All of the advances that we see in our lives are mostly based on software. Over the last
several years, software development techniques have seen a significant transition. It
simplifies and profits the firm, for example. Many customers’ burdens are lightened
as a result of their combined efforts. Today, software powers practically every
area of the economy and is an integral aspect of a country’s economy. Artificial
intelligence is no exception. Businesses have embraced practically all developing
technology in their software development. AI’s effect on software development alters
how businesses operate and makes software smarter. In this chapter, the authors
have talked about the change AI would bring to software development and the role
of could. The authors have also discussed traditional ways used. Towards the end
of this paper, they have added open issues and challenges in detail.

32

Next Generation-Based AI for Software Development

moving on to design, this phase places a strong emphasis on the early
detection of loopholes. Natural language processing is an AI approach that
allows machines to comprehend the needs of the user via natural language
then automatically generate high-level software models. As a matter of
course, there are certain drawbacks to this strategy, such as the difficulty of
balancing built systems. However, it is still a popular research issue today.

• Agile Project Management: The efficiency gains made possible by AI go
beyond normal task management. The use of AI in software development can
help engineers test, write, and deploy code to production teams in a more lean
and agile manner. AI algorithms could be used for enhancing, cost estimates,
volume estimations and project schedules by allowing development teams to
prioritise code areas that need to be completed quickly and more precisely
define potential failure probabilities. AI/ML algorithms dynamically examine
massive code databases for anomalies, informing developers of possible next
measures for protection. Glitches, Missing code alternate product or service
names under the same code are examples of abnormalities. This isn’t just useful
in restoration, but data analysis can also help in erroneous pre-diagnosis.

• Automate Software Design: Since teams are distributed throughout the globe,
designing software code is a time-consuming important, and, complex part of
the development process. Developers, designers, Research and Development
(R&D), and marketing teams must collaborate on a project by communicating
efficiently and being transparent, which has been done manually until now.
However, in the not-too-distant future, AI/ML algorithms could indeed help
to streamline and automate the planning and design process by gathering
data such as project stakeholders’ location, names, products, business type
and customer needs, to automatically create intuitive instructions upon which
design approach to consider taking without involving manual intervention. It
can really help programmers save effort, money and time, by automating the
code design process.

• To present a definite answer, project planning and design necessitate specialist
knowledge and experience. Designers face a difficult problem in deciding on
the best design for each step. Retracts and a forward-looking investigation
plan require dynamic design adjustments until the client achieves the desired
result. By using AI technologies to automate some difficult tasks, the most
capable approaches for project design can be used. Designers can, for
example, employ AIDA (Artificial Intelligence Develop Assistant) to analyze
the client’s interests and aspirations and then use that information to design
a suitable project. AIDA is a website-building tool that analyses numerous
software design combinations and delivers the best-customised design based
on the client’s requirements.

33

Next Generation-Based AI for Software Development

• Automatic Code Generation: Getting a business idea and turning it into code
for a major project takes effort and time. To address the issues of money and
time, specialists have devised a strategy that involves writing code before
beginning development. However, the strategy is ineffective when there are
unknowns, such as what the targeted code is supposed to perform, because
gathering these details takes significantly longer than building code from
scratch. AI-assisted intelligence programming will help to alleviate some
of the workloads. Consider how our system would grasp and translate our
project idea into workable code if we explained it in our natural language.
Though it may appear to be science fiction, artificial intelligence in software
development can change the narrative! Natural language processing and AI
tools will make this possible. Coding a complex, large project with several
stakeholders, on the other hand, is often time-consuming and labour-intensive.
AI coding assistance can significantly decrease development teams’ labour
while also enhancing productivity. Developers can increase their productivity
by concentrating on more strategic and creative tasks, like enhancing the
customer experience.

• Streamlining Software Testing: Testing is an essential component of any
software development process. For development teams, detecting and
preventing errors or bugs is a major challenge. Bugs and errors account for
a considerable portion of software development costs. Early error detection
necessitates continuous monitoring all throughout the project’s development
life cycle. Current software testing techniques, on the other hand, are
inefficient, time-consuming and expensive, since many problems in the code
are discovered after the application has been completed and given to end
users/launched inside the marketplace. Trained AI and machine learning
algorithms can assure error-free testing in much less time frame as compared
to human testing, allowing code testers to focus on other critical duties like
code maintenance. Development teams may test thousands or millions of
lines of code with AI-enabled code testing prototypes. Case-specific tests
can be handled by development teams, while time-consuming and repetitive
tests can be handled by AI-assisted automation technologies. This leads to a
reduction in errors since AI-assisted tests can scope and rectify faults with
extreme precision, resulting in an overall improvement in software quality.
In the near future, AI will be able to link with the cloud and do automated
testing for software testers, fixing particular defects and delivering the product
ahead of schedule, saving money, resources and resources time, while also
generating a high return on investment for the company.

34

Next Generation-Based AI for Software Development

• Software testing is an important part of the software development process
since it verifies the product’s quality. AI and machine learning-based testing
solutions include Functionalize, Testim.io and Appvance, to name a few.
Incorporating AI tools enhances and improves coding, as well as makes error
detection easier.

• Enhance Decision Making: Software developers spend a significant amount
of money and time deciding which functionality to add to a product. By
assessing the performance of existing apps and prioritising features and
products for future development, AI can help speed up the decision-making
process. Software firms can make data-driven strategic decisions rapidly as
well as at scale, boosting impact on the market and improving profitability.
Leveraging AI technologies such as advanced Machine Learning (ML),
natural language processing, business logic and deep learning, software
developers will be able to design better software faster. Machine learning
technologies have the capability of learning from previous development
projects and analysing the performance of current projects. AI in software
development not just to facilitates the development and also produces more
effective applications. Software developers can create better software with
AI’s strategic decision-making.

• Enhanced Data Security: During development, software security is a critical
aspect that must not be overlooked. Data is collected by the system through
network sensors along with the software installed on the customer’s end. We
can use AI to look at the data and use machine learning to discern abnormal
behaviour from normal behaviour. Software Development in the Future
Companies that incorporate AI within their development cycle can prevent
issues such as incorrect notifications, alarms and delayed warnings.

• Improvement in estimate accuracy: AI provides an estimate software solution
that incorporates examining historical data from previous corporate initiatives
to uncover statistics and connections. It uses business rules and predictive
analytics to provide accurate time, effort and cost estimates.

• The Future of Development: AI has enormous potential to reshape the future
of software development. The availability of AI-enabled solutions allows
software companies to deliver customer-driven experiences by providing
application strategies according to business needs.

Software development teams may use AI algorithms and advanced analytics to
make rapid decisions based on real-time data. AI applications conduct cognitive
and complicated operations associated with human thinking, as opposed to robots
that react to rules-based logic or offer pre-determined solutions. AI algorithms
can automate the coding process by integrating data from a range of sources, such

35

Next Generation-Based AI for Software Development

as sensors, remote inputs and microchips, to assist developers to write accurate
code, resulting in more agile, scalable and efficient, processes. As a result, AI can
be incorporated into software development to provide highly tailored products or
services to customers. Artificial intelligence can have a massive effect on software
development and design. Artificial intelligence’s influence and potential benefits
must be understood by software development organisations, not just in terms of how
software is built, but also in terms of the program’s nature. AI will play a critical role
while designing, generation of code, and testing of software, among other things,
and will be a game-changer in the near future.

In the next section Literature Survey. In section 3 of this chapter, we have discussed
different software engineering methodologies like the agile method, different
testing methods, etc. In section 4 we have discussed about different frameworks
for AI development, ML life cycle and testing, debugging of AI/ML applications.
Section 5 is about AI-based approaches to Software Engineering. The next section
6 is about the use of the cloud. Section 7 is about different technologies of Software
development. In sections 8 and 9 we have discussed about Open issues and future
research opportunities. Section 10 is about the change AI will bring to software
development and the last section 11 conclude this works in brief.

2. LITERATURE SURVEY

Despite the fact that Artificial Intelligence (AI) is becoming a buzzword in relation
to self-organized IT technologies, its implementation in software engineering has
received little attention. The analysis concludes that a) the automation of long and
tedious routine jobs in software testing and development utilising algorithms, such
as documentation and debugging, b) structured and systematic analyzing large data
pools to identify and analyze patterns and novel information agglomerations, and c)
the comprehensive and systematic assessment of this information in neural network
models are major achievements and future potentials of AI. As a result, AI aids in
the acceleration of development processes, as well as the reduction of development
costs and increased efficiency.

Artificial intelligence, identified as machine-based reasoning, interpretation
and perception, of mental and environmental constructs (Kakatkar et al., 2020;
Poole & Mackworth, 2010), has the potential to multiply software engineering
strategies and approaches, such as the methodical methods to do design, assessment,
implementation, software analysis, reengineering, test, assessment, and maintenance
(Laplante, 2000). For example, Jarrahi (2018) sees AI’s key capabilities of software
engineering in relation to language processing (i.e., recognition and interpretation
of human language), machine learning (adoption and workflow analysis), as well as

36

Next Generation-Based AI for Software Development

machine vision (target and strategic concentrated machine reasoning and problem).
Muenchaisri et al. (2019) similarly discuss AI functions such as neural networks,
natural language processing and machine learning.

Based on more of a quantitative and systematic categorization of previous studies,
Savchenko et al. (2019) review of 54 studies helps to identify the fields of IoT and
big data technologies, machine learning, system analytical techniques, design and
programming assistance tools, and knowledge management and recommendation
tools. Although function-related classifiers of AI within software engineering are
experimentally supported, there is a danger that unexpected domains that AI may
plausibly serve will be overlooked because they have not yet been empirically studied.
In a variety of case studies, Andreou and Stylianou (2016) analyse the optimization
outcomes of numerous algorithms in multi-objective assignment optimization
involving duration and cost objectives and find AI-based approaches superior to
traditional linear planning.

Zhang et al. (2016) employ a target-driven technology-road-mapping
decomposition model that depends on an adept understanding of the database and
uses fuzzy and semantic group analytics methodologies to assess project perspectives
dependent on several interdependent determiners. The client and developer verify
the software product’s functioning in practical, analyse and detect faults, and modify
the product to practise needs during the testing phase (Seffah et al., 2005). To aid
software integration and testing, AI employs machine learning and pattern recognition
methodologies (Meinke & Bennaceur, 2018). Filieri et al. (2015) developed a runtime
decision algorithm-based engine that allows an application to adapt to changing
circumstances. Depending on network needs, the self-adaptive system continually
reconfigures software components.

This routine reduces the need for human assistance and updates while still
ensuring on-time security, programme stability and adaptivity, AI also aids software
modernization by utilising machine learning and pattern recognition methods. Due
to insufficient documentation, structural information is commonly lost in ancient
codes. To extract coherent collections of code, AI pattern recognition algorithms are
useful. To trace and check their functionality, machine learning functions are applied
(Alhusain et al., 2013). Pattern tracing functions eliminate unnecessary code pieces
and generate implementation artefacts and test software functions automatically (Van
Hoorn, et al., 2011). Fenton et al. (2010) propose a Bayesian network approach for
optimising cost and quality outcomes at the same time. Bayesian models, unlike
traditional optimization models, can incorporate a high number of co-determiners
and coefficients, as well as deal with missing and ambiguous data. In order to
achieve an ideal work assignment and maximise team performance, Athavale et
al. (2013) employ AI to predict the interconnections between human beings and
their environment in software project operations. To assemble performing teams as

37

Next Generation-Based AI for Software Development

measured by output quantity and development speed, the model takes into account
human personality traits and affective states, as well as competencies, learnability,
and individual interactions. The stages of software development are referred to in
process-related classifications of AI in software engineering, which examine how
well AI can support software engineering at each stage.

This method is likely to avoid the bias of ignoring AI development requirements
and shortcomings, which are common in functional classifications. Only two
evaluations have been found that use process-related classifications: Sorte et al.
(2015) and Padmanaban et al. (2019) both recommend categorising Ai systems
into three stages of the software engineering life span: software testing, creation,
maintenance and deployment. A six-stage model of the software engineering life
cycle is used to implement the review, which has found widespread use in academic
software engineering literature (Leau et al., 2012) and software development practice
(Ramadan & Widyani, 2013; Velmourougan et al., 2014). Project planning, problem
analysis, software design, implementation in software code, software testing and
integration, software maintenance and support are all included in this step.

3. SOFTWARE ENGINEERING PROCESSES
AND METHODOLOGIES: IN GENERAL

The software engineering process entails tasks such as maintenance, testing, coding,
design, analysis, and requirement gathering to manage the development of software.
Different approaches to the delivery of software and software development are
referred to as software engineering methodologies. The software process model
is a simplified version of the process being discussed. A simplified model of the
software process may also be defined. Each model depicts a process from a unique
viewpoint. Different types of software process models can be implemented using
basic software process models.

3.1 Agile Methods

Agile is a set of methods that a team uses for managing a project by breaking it
into smaller phases and regularly collaborating with clients. Every level of the
software development for the project is regularly monitored. The benefits of agile
constitute the fact that, unlike traditional waterfall methodologies, both testing and
development processes are synchronised and concurrent. On the market, there are a
variety of agile approaches to satisfy the needs of any project. Regardless of the fact
that there are numerous agile approaches, they are all based on the main ideas of the
agile manifesto. As a consequence, any framework or behaviour that follows such

38

Next Generation-Based AI for Software Development

principles is described as Agile, and despite the various agile methodologies used by
a team, the benefits of agile methodology can only be completely realised with the
engagement of all involved parties. A dynamic approach is required when selecting
the appropriate agile methodology from the several forms of agile methodology.
The advantages and disadvantages of agile methodology must be carefully assessed
when choosing the framework for one’s organisation in order to attract talent and
offer excellent digital experiences in this fiercely competitive sector.

3.2 Business Process Design and Deployment

The business process is a set of procedures that allow a company’s activities to run
smoothly. These workflows are made up of a set of actions that must be executed in
a specified order in order to accomplish objectives. The Business Process Design
(BPD) is the process of creating new processes from the ground up in order to
meet a company’s objectives. The purpose of BPD is to create scalable and easy-
to-replicate processes and workflows. BPD helps us to avoid superfluous stages
in order to streamline a process and save resources by ensuring that each team
member understands the exact duties and order of action. Deployment checklists are
developed, delegated, coordinated, updated, executed, and reported on by Process
Owners. Because Procurement, Information Technology, Training and Development,
and other departments are required to establish the proper environment that supports
the process, the checklist spans across businesses.

3.3 Program Specification and Modeling Languages

A programme specification outlines the intended outcomes of a programme; its
primary goal increases understanding rather than implement it. The programming
technique is built on the foundation of specifications. A specification is indeed
a technical agreement between a customer and a programmer or company that
establishes a shared understanding of the software. A client utilises the specifications
to guide the usage of software, whereas a programmer utilizes it to drive the creation
of a required programme. There are sub specifications also, each specifying a sub-
component of a particular programme, which might be generated from a complicated
specification. The building of such sub-components would subsequently be assigned
to other programmers, allowing a programmer to serve a client.

Any textual or graphical computer language that specifies the design and creation
of models and structures according to a set of frameworks or rules is referred to as
a modelling language. The modelling language is a subset of the artificial language
and is comparable to it. The modelling languages are mostly used in software
development to create models for new software and systems. Modelling languages

39

Next Generation-Based AI for Software Development

are largely graphical and textual in nature, although they are divided into 4 groups
depending on the specification and requirements of a domain in use:

• Language for data modelling
• Language for system modelling
• Languages for object modelling
• Modelling language for virtual reality

The Unified Modeling Language (UML) is a popular modelling language for
creating visual representations of systems and objects.

3.4 System Validation and Verification

Verification is a process of establishing whether a product meets the specifications
or standards that have been set forth. Validation is the process of determining if a
delivered or planned system will fulfil the sponsor’s operating requirements in the
most realistic environment possible.

• The validation phase examines and validates the real result whereas the
verification process examines documents, designs, codes, and programmes.

• Validation requires the execution of code, whereas verification does not.
• Validation determines if software satisfies needs and expectations, whereas

verification determines whether software verifies a specification.
• Validation determines if software satisfies needs and expectations, whereas

verification determines whether software confirms a specification.
• When comparing Verification versus Validation testing, the validation phase

occurs after the verification step.

3.5 Program Analysis Tools

The Program Analysis Tool is an automated tool that takes the source code or executable
code of a programme as input and produces observations about the program’s
features as output. It describes the program’s size, complexity, commenting quality,
adherence to programming standards, and many other features (refer to Figure 1).

3.6 Software Mining Specifications

Software mining is a type of knowledge discovery that entails analysing existing
software artefacts in the context of software modernisation. Reverse engineering is
a term used to describe this procedure. Typically, existing programme information

40

Next Generation-Based AI for Software Development

is offered in the form of models, to which particular queries may be performed as
needed. A common approach for expressing knowledge gathered from existing
software is an entity relationship. Because existing software artefacts hold tremendous
economic value and are critical for the growth of software systems, software mining
is closely connected to data mining. The structure, behaviour, and data handled by
the software system are all addressed in knowledge discovery from software systems.

3.7 Software Testing

Software testing is a technique for determining if the actual software product meets
the expected criteria and ensuring that it is defect-free. It entails the use of manual
or automated methods to assess one or more attributes of interest by executing
software/system components. In contrast to real requirements, software testing’s goal
is to find mistakes, gaps, and missing requirements. Program testing is important
as it allows any faults or mistakes in the software to be found early and fixed
before the software product is delivered. A well-tested software product provides
dependability, security, and excellent performance, which saves time, money, and
improves customer satisfaction.

3.8 Engineering for Quality Requirements

The application of quality engineering methods to the SDLC (software development
lifecycle) is known as software quality engineering (SQE). Instead of being layered
on top of current workflows, software quality engineering is tightly linked with
existing DevOps and agile processes. This is similar to the DevSecOps team’s
shifted-left testing methods and is meant to discover concerns early on. Engineers

Figure 1. Classification of program analysis tools

41

Next Generation-Based AI for Software Development

play a crucial role in software quality assurance. Quality engineers create, execute,
and manage rules and procedures to guarantee that development processes are of
high quality. This necessitates a deep grasp of current evaluation methods and
technology, such as big data analytics, automation, and AI. The primary goals of
software quality engineering are:

• Process control and oversight
• Implementing standards and metrics
• Data collection and analysis
• Test development
• Identification of issues and solutions
• A follow-up to ensure corrective actions

3.9 Model-Driven Development

Model-Driven Development (MDD), is a software development process that allows
users to create complicated systems by abstracting pre-built components into simpler
abstractions. Rather than explaining, all these visual building pieces demonstrate
the business’s needs and potential solutions to technical issues. Model-Driven
Development is the most crucial principle of low code development it is also the
link that connects business domain specialists with IT, allowing them to cooperate
and turn ideas into useful solutions.

3.10 Software Economics and Metrics

Software Economics in Software Engineering is a mature academic topic that
normally works with the most challenging and difficult challenges and concerns of
valuing software and evaluating or estimating the costs typically associated with its
creation. These issues and challenges are outlined by Boehm and Sullivan (2000),
who also show how software economics ideas may be used to better software design
and development.

3.11 System Modeling and Simulation

Modelling is the process of expressing a model, including its design and operation,
in the field of modelling and simulation. This model is based on a real-world
system, and it aids the analyst in predicting the impact of system modifications. The
operation of a model in terms of time or space, which helps examine the performance
of an existing or proposed system, is known as a simulation of a system. We will

42

Next Generation-Based AI for Software Development

explore the concept and categorization of Simulation and Modelling, as well as its
architecture, application areas, and other major concepts, in this lesson.

3.12 Traceability of Software Artifacts

Software artefact traceability is widely acknowledged as a critical component of
successful software development and maintenance. “The capacity to follow the
life of a requirement in a forward and backward manner” is how software artefact
traceability is defined. Traceability between software artefacts can be useful for a
variety of purposes (Oliveto et al., 2007).

3.13 End-User Development

End-user development is when a software program’s end-user is in charge of creating
new apps or assets. This is in contrast to more fundamental software development,
in which the business responsible for generating a program also develops all of the
program’s applications and assets. The fact that such development may speed up
development time and make users feel more connected with the program are two
major benefits. End-user development has been used in a variety of applications,
including video games, graphics programs, and scientific modelling tools.

4. SOFTWARE ENGINEERING AND ARTIFICIAL
INTELLIGENCE/MACHINE LEARNING

From robots to Google Siri and now the new Google Duplex, artificial intelligence
appears to be making significant progress toward becoming more humanistic. Machine
learning and artificial intelligence are in high demand. As a result, the community has
grown, which has resulted in the development of various AI frameworks that make
learning AI simpler. Artificial Intelligence (AI) is the computing industry’s future.
And, as the need for AI grows, a growing number of programmers are becoming
familiar with this technology. Information with respect to software engineering for
AI can be discussed below:

4.1 Development Framework for AI Applications

The demand for machine learning and AI has grown exponentially. Additionally, the
community itself has increased as a result, and that has led to the evolution of some
AI frameworks that make learning AI much easier. Now, few of the simulations/
framework will be discussed here as:

43

Next Generation-Based AI for Software Development

• Caffe: Convolutional Architecture for Fast Feature Embedding is an acronym
for Caffe. It has a strong design that optimises without hard coding and
follows configuration-defined mechanisms. This may also be used to switch
between GPU and CPU. Caffe is great for industrial and scientific tasks since
it can process over 60 million pictures per day on a single NVIDIA GPU.
MATLAB, C++, Python, and CUDA to command-line interfaces are all
supported by the AI framework. It’s quite easy to use Caffe to create a CNN
(coevolutionary neural network) to recognise a photo.

• Torch: The torch is a scientific computation system that can do both scientific
and numerical computations. It creates algorithms that are quick, versatile,
and easy to use. The torch, which is a Tensor Library akin to NumPy, looks
to prioritise GPUs. This is included in LuaJIT and provides a basic C/CUDA
connection. Having a large number of algorithms, this improved performance
and encouraged deep learning analysis. Torch consumers come with simple
libraries, enabling the modular implementation of networked artificial logic
systems. This improves with processes like cutting and indexing thanks to a
flexible N-dimensional array. It also incorporates neural networks and linear
algebra methods.

• Scikit-learn: Scikit-learn is a commercially licensed AI framework and one of
the more accessible AI methodologies. That’s a Python software that supports
unsupervised ML and supervised ML. It is a flexible AI generation approach
that supports grouping, dimensional reductions, clustering algorithms, and
regression, as well as model collecting and pre-processing.

4.2 Machine Learning Lifecycle Management

A development lifecycle that enables learning models for generating bespoke
Machine learning and apps has become extremely important as machine learning
gains popularity in enterprises. As a result, it’s critical for data-driven businesses to
select a Machine Learning platform that interacts with different Machine Learning
frameworks. Machine Intelligence (MI) Life Cycle Management is significant as
it defines the role of each and every employee in an organisation, from business to
engineering, in data science activities. Although there are a variety of established
technologies that supports every phase of this lifecycle, also there are few solutions
that connect those components all together into a unified machine learning platform.
To support a model’s lifespan, one must be able to manage the numerous artefacts
related to ML and their relationships, as well as automate deployment. For deployment,
visualizing, versioning, and storing of artefacts, a lifecycle management service
created for this purpose should be used.

44

Next Generation-Based AI for Software Development

4.3 Testing, Correctness, Debugging, and
Interpretability of AI/ML Applications

AI/ML short for artificial intelligence (AI) and machine learning (ML)—represent
a significant advancement in computer science and data processing that is rapidly
revolutionising a wide range of sectors. Businesses and other organisations are faced
with a growing tsunami of data that is both extremely valuable and increasingly
difficult to acquire, handle, and analyse as they undertake digital transformation. To
handle the massive amounts of data being collected, mine it for insights, and act on
those insights after they’ve been discovered, new tools and processes are required.

• Testing: For ML models, white box and black box testing are employed.
Generating training data sets that are large and comprehensive enough to meet
the goals of ML testing is a substantial challenge. During the development
phase, data scientists compare the model outputs expected results to the
actual results in order to evaluate the performance of the model. Some of
the methodologies for black-box testing ML models are Model performance
testing, Metamorphic testing, Algorithm Ensemble. Backtesting is the process
of putting a prediction model to the test using past data. This approach is
commonly used in the financial industry to measure the performance of prior
models, especially in credit risk assessments, fraud detection, trading, and
investing.

• Correctness: The number of classifications a model successfully predicts
divided by the total number of predictions produced is known as model
accuracy. Model quality always relates to fit, not accuracy, in the absence
of standards. We don’t dismiss the entire model if we disagree with a single
prediction; rather, we embrace the reality that some forecasts will be incorrect
and strive to quantify how often a model is incorrect given the facts in our
case. In other words, an evaluation will decide if a model is appropriate for
a certain problem and beneficial in solving it. This is a big departure from
traditional software testing and is more akin to software validation tasks such
as acceptability and user testing.

• Debugging: Model debugging is a new field that focuses on identifying and
resolving issues in machine learning systems. Model software testing and
risk management are all now used, in addition to newer developments. Model
debugging tries to test Machine learning models like code and investigate
complicated response functions of the ML model and make decisions
to limits, find and fix errors in ML systems to improve fairness, security,
accuracy, and other issues.

45

Next Generation-Based AI for Software Development

• Interpretability: The more interpretable an ML model is, the easier it is to
understand why particular judgments or predictions were made. If a model’s
judgments are simpler for a person to understand than the decisions of another
model, the model is more interpretable. Using only a subset of algorithms that
build interpretable models is the simplest technique to obtain interpretability.
Interpretable models such as logistic regression, linear regression and
decision tree are frequently utilised.

5. SOFTWARE DEPLOYMENT AND OPERATIONS

The use of AI-based approaches to Software Engineering challenges has recently
sparked a spike of interest. Recent developments in Search Based Software
Engineering, as well as long-standing work in machine learning and Probabilistic
reasoning for Software Engineering, are examples of the work.

5.1 DevOps

Advanced technologies such as ML and AI address a variety of problems and reduce
DevOps’ operational difficulties, allowing companies to shift quickly. The different
ways in which AI is altering DevOps are listed below.

• Enhanced Data Access: In DevOps, a lot of data is created every day, and the
team is having trouble accessing it. Artificial Intelligence can assist gather
data from many sources and arranging it. This information will aid in the
analysis and provide a clear picture of current trends.

• Security: Distributed Denial of Service (DDoS) is a popular attack these days.
It may be used against any company or website, be it small or large. ML and
AI can aid in the detection and management of these attacks. An algorithm
can be used to distinguish between abnormal and normal circumstances
and then take appropriate action. To improve security, DevSecOps may be
enhanced with Artificial Intelligence. For identifying abnormalities and
threats, it incorporates a centralised logging architecture.

• Software Testing: AI aids in the creation of processes and the testing of
software. Functional testing, Regression testing, and user acceptability testing
are all forms of testing used in DevOps. These tests generate a significant
amount of data. AI recognises the pattern in the data and then determines the
coding techniques that resulted in the problem. As a result, the DevOps team
will be able to use this data to improve their productivity going forward.

46

Next Generation-Based AI for Software Development

5.2 Container Based Software Artifacts

Developing cloud-based AI systems necessitates the incorporation of these
capabilities into containerized microservices. This entails incorporating Artificial
Intelligence and other application logic into Docker images that could be managed
via Kubernetes or other could based orchestration backbones utilising Java, python,
and other languages. To create efficient AI microservices, developers must break
down the core application capabilities into modular pieces which could be deployed
in cloud-native settings with low resource constraints. In a cloud services context,
Artificial Intelligence microservices are dynamically containerized and orchestrated
inside lightweight interoperability fabrics.

5.3 Handling Container Image Sprawl

Container sprawl refers to the practice of accumulating an excessive number of
containers. There are some distinctions between running a physical data centre and
a cloud native container system, the main issue is the same that is cost. Spinning up
a large number of containers produces business concerns, such as cloud computing
expenses and administrative issues, which can lead to inefficiencies in most cases. To
be clear, while deploying containers is far more convenient rather than establishing a
new physical server or servers, the costs associated with doing so can easily spiral out
of hand. The best approach to utilize the most out of the capabilities that containers
provide while keeping expenses under control is to implement appropriate virtual
machine and container policies.

5.4 Green Data-Center Management

A greener data centre will save power costs, increase cooling capacity, and improve
system dependability while lowering the ownership cost considerably. Energy
consumption is one of a data centre’s biggest costs, as per the Storage Networking
Industry Association. It’s also one of the top ten concerns for data centre operators.
Adopting a green strategy for data centre energy and environmental management
might be costly. These data centres, on the other hand, provide a variety of benefits
over time. The following are some of the advantages of green data centres: reduces
CO2 emissions, reduces the use of electricity, stresses the usage of renewable and
environmentally friendly data centres, reduces water usage.

47

Next Generation-Based AI for Software Development

5.5 Fault Isolation and Repair

A fault is an incorrect step in any workflow or data specification in a computer
program that is accountable for any program’s unwanted behaviour. Errors can
be caused by hardware or software flaws or bugs. An error could be defined as a
component of a system that causes the system to fail. A program error is essentially
a signal that a failure has occurred or is about to occur.

6. SOFTWARE FOR THE CLOUD AND
CYBER-PHYSICAL SYSTEM

A key component of critical infrastructure, cyber-physical systems are so important
to the country that their destruction or incapacity would have a crippling effect on
social stability, public health, economic security, national security, or any combination
of these factors (Gao et al., 2015).

6.1 Security

Cyber-physical systems are intelligent, a large network of physical devices (connected
to web), and standardised but it also introduces a slew of new security issues. About
90 percent of attacks can be detected using signature-based approaches. Traditional
procedures can be replaced with AI to enhance detection rates by up to 95 percent,
but there will be an explosion of false-positive. Combining traditional approaches
with AI would be the greatest approach. This can lead to fewer false positives and
we can also achieve a 100 percent detection rate. By incorporating behavioural
analysis, organizations may employ Artificial Intelligence to improve the threat
hunting process. For example, by analysing large amounts of endpoint data, AI
models may be used to generate profiles of each and every application inside a
company’s network.

6.2 Data Obfuscation

Data obfuscation is the practice of masking sensitive data with data that seems to be
true production data, rendering it worthless to malevolent actors. It’s mostly utilised
in test and development environments, where developers and testers want accurate
data to design and test software but don’t need to view the real thing.

48

Next Generation-Based AI for Software Development

6.3 Application Driven Resource Allocations

UDNs which stands for Ultradense networks have emerged as a potential architecture
for future data traffic support, however, this deployment scheme would present
significant issues in Application Driven Resource Allocations. UDN situations can
benefit from artificial intelligence, which allows intelligent communication devices
to do resource allocation. The concept of event-triggered Q-learning was brought in
the study of power and subchannel distribution in Ultradense networks in this work
(Zhang et al., 2019), and an event-triggered Q-learning-based resource allocation
method was suggested by the authors.

6.4 Cross-Cloud Deployment

A multi-cloud approach can provide us with this extra degree of flexibility in a
number of ways. Running our AI projects across several cloud service providers
adds a layer of stability, decreases the chance of downtime, and gives companies
business continuity according to the use-cases demand. While the idea is simple to
grasp, putting it into practice is a little more difficult. Each cloud provider has built
its own data management system, making data transfer across clouds challenging. A
cross-cloud strategy overcomes this problem by properly managing data with each
provider while offering a consistent end-user experience, regardless of where the
data and apps are stored. Multi-cloud is also critical for maintaining continuity of
operations in the case of a disaster (Horn et al., 2019).

6.5 Performance Engineering for Cloud
Apps/Cyber Physical System

Since the advent of computer programming, software engineers have been tripping
over false assumptions. Take, for example, a ticketing system for airlines. Airlines
had little or no online services ten years ago. Only if we were using the appropriate
browser we could search for flights and buy tickets.

6.6 Self-Adaptive Systems

Self-adaptive systems are intended to give formal assurances concerning the
robustness and efficacy of adaptation mechanisms. When it comes to dynamic
adaptation, the computing efforts that are required to establish assurances impose
significant limits. For addressing these issues, a hybrid strategy that integrates AI,
control theory, and software engineering to design for software self-adaptation is
recommended. A performance-tuning dynamic and hierarchical system manager. A

49

Next Generation-Based AI for Software Development

hierarchically constructed components design seeks the separation of concerns to a
dynamic solution due to the gap between high level requirements definition and the
internal knob behaviour of the controlled system (Caldas et al., 2020).

7. OTHER USEFUL COMPONENTS/ TECHNOLOGIES
FOR SOFTWARE DEVELOPMENT

Software development is the process of creating computer software using one or more
specialised programming languages in order to meet certain corporate or personal
goals. Software development is typically a well-thought-out process involving a
series of processes and stages that culminate in the creation of functional software.

7.1 Software Engineering Education

Several research investigations in the United States found that the government
relies on poorly understood and highly massive software systems, which are prone
to frequent unanticipated breakdowns. Several studies have also revealed that many
software projects were cancelled due to being costing and late more than expected. A
software failure can lead to a company failure. Because most company applications
are shifting to an e-business atmosphere, software quality is becoming increasingly
important. These environments are becoming more complicated and sophisticated
as a result of modern techniques and the growing role of software in daily life. In
this regard, it is the responsibility of Software Engineering (SE) professionals to
ensure the quality of SE education (SEE). As a result, it is SEE’s obligation to equip
SE professionals by providing them with skills to match the software industry’s
requirements. According to studies, there is a significant gap between software
industry needs and education for future managers to adequately manage this
complicated environment. We recognise that software engineering is the speediest
evolving engineering application of engineering and that the majority of software
development organisations’ jobs are diversified. It is also critical that graduate
students gain extensive experience in a variety of fields. If the pupils are well-versed
in emerging technology, this will be a plus. It also suggests that communication, skills
in continuing education, professionalism, multidisciplinary abilities and practical
experience are all vital aspects of software engineering education. These elements
are not expressly addressed in existing guidelines and studies. While there may be
other aspects to consider in software engineering training, we consider the ones
we’ve mentioned are critical since software engineering evolves at a faster rate than
any other engineering discipline.

50

Next Generation-Based AI for Software Development

7.2 Deep Learning

Due to the success of deep learning in pattern recognition and data mining, academic
researchers and industrial practitioners have been increasingly incorporating deep
learning into SE problems in recent years. Deep learning assists SE participants in
extracting requirements from predicting software flaws, generating source code, and
natural language text, among other tasks. SE can be separated into five phases, as
proposed by traditional SE models such as the Incremental Model and the Waterfall
Model. These phases include software design, maintenance. requirement analysis,
development, and testing. With software design, software design patterns can be
identified, such as synthesis and code recommendation, programme learning, and so
on. Additionally, software testing and maintenance are important steps to consider
while attempting deep learning. Reliability estimation and Defect prediction, as well
as defect prediction, malware detection, changeability estimation and reliability,
and effort estimation or development cost, are all included. People with the title
software engineer-deep learning are responsible for activities such as modelling,
data engineering, AI infrastructure and deployment. Define data needs, label,
move data, examine, augment, clean, and gather are all data engineering subtasks.
Training deep learning models, reading research papers, setting evaluation criteria,
and searching hyperparameters, are examples of modelling subtasks. Subtasks for
deployment include converting prototyped code to production code, setting up a cloud
infrastructure to deploy the model, and optimising response times and bandwidth
usage. Maintaining reliable and Building, fast, scalable and secure, software
systems to assist employees working in modelling, data engineering, business and
deployment, are examples of AI infrastructure subtasks. The deep learning method
is learning for learning representations of data with several degrees of abstraction
using computational models built of numerous processing layers. For example, we
use the deep learning method AutoEncoder to summarise bug reports, which is a
common SE task. Bug reports are writings that describe software flaws. Bug report
summarising seeks to construct a summary by extracting and highlighting relevant
sentences from a bug report to reduce reading time when faced with a large number
of them. Researchers use AutoEncoder to unsupervised encode the words in bug
report sentences in order to identify informative sentences.

7.3 Robotics

Robotics and software will have to fulfil the economy’s ever-increasing demands
and facilitate production in the next years. To be more specific, here are the five
developments to look out for in the domain in question:

51

Next Generation-Based AI for Software Development

a) Robotic systems will be more user-friendly: The complex industrial robotic
system of today necessitates highly skilled specialists, which is one of the
main roadblocks to the widespread use of robotics, aside from the high cost.
As a result, in order to democratise the usage of robots in the future and make
them accessible to the general public, we will require increasingly complex
software to handle robots on a daily basis. Is it possible to put this into action
right now? DMG MORI, a German manufacturer, is demonstrating how this
would be achievable. Their personnel use straightforward mobile apps to control
robotic solutions, allowing low-tech specialists to programme the automated
systems.

b) More customisation to satisfy specific needs: Building highly specialised robots
is currently an expensive pastime. Robotics development, maintenance, and use
will all be cheaper if more adaptable solutions are developed. Furthermore, the
customizability of robotics must match the unforeseeable wants of the future
market in order to establish a vast path in the future.

c) Improved management for improved manufacturing control: Better
administration of fully automated technology reduces costs and saves time.
Though we can’t expect robotics to be error-free, we can demand shorter
incident reporting and resolution times. Furthermore, better management is
required to improve strategy-making and prediction. This is due to the need
for stability, which is a must-have characteristic for software developers.

d) Traceability for greater feedback: Knowing where, when, and how our equipment
is working is critical in the organisation. As a result, we may rapidly identify
overabundant robotic labour in one operation chain and redistribute it to
wherever it is most needed.

e) Modification: To introduce upgrades to robotic system design is the driving
force of life, according to evolutionary theory. Things may change faster than
they do now in various sectors of robotic implementation. As a result, the most
difficult challenge for software developers will be fast updating automated
equipment and upgrading it as needed.

f) Software quality: Whether in the field of enterprise robots or self-driving
vehicles, the efficacy of our solution is determined by the professionalism
of the developers and software quality. As a result, mobile app development
businesses and software like MLSDev are now following a popular trend:
engaging in the professional development, training, and mental well-being of
those responsible for the digital solutions of the future.

52

Next Generation-Based AI for Software Development

7.4 Natural Language Processing (NLP)

The fields of natural language and software engineering processing are intertwined.
They are both engineering fields and computer science. Natural language processing
is a multi-computer method that works with natural languages. Natural language
processing is a branch of artificial intelligence, computational linguistics and computer
science, concerned with the interactions of human (natural) languages and computers,
and in particular with programming computers to process huge natural language
corpora efficiently. Analysing and perceiving visual scenes, speaking natural and
understanding language such as computing arithmetic, logic operations and English,
having memory, decision making looking forward to and inferring for generalisation
and learning from new experiences, are all examples of human natural intelligence.

The digital transition, the Internet of Things, and the use of social networking
sites have all resulted in a large amount of semi-structured or unstructured text
data. With zetta bytes of data in 2020, this age is dubbed the “big data” era. Text
accounts for up 8% of all data on the internet. Thus, in the big data era, AI products
and services that recover information from AI are more important in structured
numerical computing. The most recent natural language processor, GPT-3, was
trained using the whole internet text data and was launched in June 2020. The history
of NLP and the present situation of the GPT-3 NLP model are discussed. There is
a progression of programming languages between the first and fifth generation, as
well as shifting programming trends.

Text mining has recently been developed to teach a computer to comprehend
human communication. Natural language is a set of terminology that abides by text
mining that has just emerged to teach a machine to understand human communication.
Computer Vision is a term that refers to the study of Many common methods,
approaches and tools, that can be employed in the creation of NLP software, according
to Software Engineering. There are numerous prospects for the application of NLP to
improve SE theory and practice in the context of Software Engineering (SE). Many
studies have recently been conducted to determine the extent to which large code
corpora retrieved from Stack Overflow, GitHub, and other sources can be analysed
using statistical NLP models and algorithms, allowing revolutionary advances in
translation, speech recognition, comprehension, and other areas to be applied in SE.

We have managed NLP in SE under the following headings: a) NLP in Umbrella
Activities b) NLP in the Software Development Life Cycle.

The writing survey provided insight into how Natural Language Processing can
be applied to SE improvements. It was difficult to conduct a Systematic Literature
Review (SLR) due to various shortcomings in obtaining various false positives. The
common dialect handling areas can also be linked to distinct Software Engineering
sub-zones.

53

Next Generation-Based AI for Software Development

i. Programming Testing
ii. Displaying and Specification
iii. Documentation
iv. d)Task Management e) Programming Quality
v. Programming Configuration Management
vi. Web Engineering are just a few of them.

7.5 Recommender Systems

Software engineering-specific recommendation systems are emerging to aid
developers in a variety of tasks. Various recommendation systems assist people in
making judgments and locating information in situations when they lack experience
or are unable to analyse all available data. These systems integrate a variety of
engineering and computer science techniques to make proactive suggestions that are
tailored to the users’ specific information needs and preferences. 1 Until now, the
majority of recommendation systems were linked to the Internet. A large number
of them, like Amazon.com’s recommenders, are examples of mature technology
provided as an element of commercial systems. The difficulties humans have while
exploring enormous information spaces are similar to those faced by software
developers trying to discover the one class they require among hundreds.

Recommendation Systems for Software Engineering (RSSEs) is gaining traction
as a way to help developers with everything from code reuse to problem reporting.
RSSE development is driven by the rising velocity of growth and heterogeneity
of software systems and libraries, in addition to their magnitude. Similarly, when
distributed programming becomes more common, information sharing among
team members is becoming more difficult, motivating technology solutions. Large
stores of currently accessible source code for mature software repository mining
techniques, widespread adoption of common software development interfaces, such
as Web interfaces like Bugzilla and tool-integration platforms like Eclipse, analysing
recommendations, and, are all key factors in the development of practical RSSEs.
RSSEs are ready to enter the toolkits of industrial software developers. Prototypes
are evolving swiftly, tools are being published, and first-generation systems are
being reimplemented in new settings. Recommendation systems assist consumers
in overcoming information overload by exposing them to the most interesting
objects and providing relevance, surprise, and innovation. RSSEs are similar to
this description in that they try to assist developers in making decisions. RSSEs
enable developers to discover the Application Programming Interface (API), human
experts and proper code, in information spaces that include a system’s code base,
other documentation, libraries, version history, and, bug reports especially when it
comes to information-seeking goals. RSSEs also tailor their output to the preferences

54

Next Generation-Based AI for Software Development

of their users. Developers could communicate their interests either directly through
a query or implicitly through behaviours that the RSSE considers when making
suggestions. Such distinction illustrates a common problem for recommendation
systems: determining context, which may include all relevant data about the user,
her or his work conditions, and the project or task condition just at the time of the
recommendations.

7.6 Internet of Things (IoT) Devices

In the past, software engineering techniques can be harnessed and adapted to the
challenges of today’s IoT. Nevertheless, new approaches to standard software
engineering techniques are also needed—for example, rethinking configuration
management in the context of the extremely dynamic, continuously reconfiguring
systems that are characteristic of the IoT. A new generation of development
environments is needed for software engineering for the IoT.

7.7 Blockchain Technology

Blockchain is used for data traversal in peer-to-peer networks and data storage in
transparent ledgers because it is extremely secure. Growth in the number of blockchain-
oriented apps has resulted from the increased availability of mobile applications
with improved security and quality. The following are the primary characteristics
of blockchain-oriented software applications (BOS) that assure data security:

a) Data Replication: The blockchain code is duplicated in each node. Data security
is ensured since the data is replicated and stored across thousands of systems.

b) Transaction Recording: Transactions are recorded in a sequential log of
interconnected blocks established by a consensus process in Blockchain-
Oriented Software Systems (BOS).

c) Requirement Examines: BOS checks the transaction requirements before
submitting them for validation.

d) Public-Key Cryptography: Public-key cryptography is a cryptographic program
that utilizes pairs of private and public keys to secure transactions.

7.8 Digital Twin Technology

Processes and equipment are so complicated in today’s world that the risk of failure
or disruption through experimenting with new ways is either too great or too
expensive. And this can be aggravating when new concepts have the potential to
improve existing systems significantly. A digital twin is a virtual representation of

55

Next Generation-Based AI for Software Development

a physical object. It uses analytics and IoT sensors to produce data-driven models
of physical systems. Companies create digital twins by embedding sensors in their
products and equipment to track and model system dynamics. Companies across
various industries are using digital twin technology, along with the newest artificial
intelligence and machine learning capabilities, to improve performance increase
efficiency, cut operational costs, and revolutionise the way predictive maintenance
is done. Digital twin technology is critical for product producers to have more
efficient production lines and shorter time-to-market. Now, a few benefits of digital
twin software are included here as:

a) Reduced costs. Before a functioning prototype is shown, a product usually
goes through multiple revisions. It is quite expensive because the process
necessitates a large amount of time and effort. Engineers can use digital twins
to run tests and simulations inside a virtual environment, which decreases
faults during actual production. In the digital realm, it is considerably faster
and cheaper to fix flaws than it is in the physical world. Manufacturers can
virtually eliminate all future output hazards and ensure that the physical thing
will function exactly as intended.

b) Less time to market for new products. Due to numerous phases and periodic
changes in production, getting to market faster than competitors is frequently a
challenge. Digital twins’ advanced image algorithms enable them to significantly
cut time to market. The product life cycle takes place in a digital environment,
which allows for quick and easy adjustments. A virtual prototype verifies how
well the physical replica will operate in real life, reducing development time
and increasing efficiency.

c) Predictive maintenance. To anticipate and address problems well in advance
is the fundamental benefit of the digital twin technology. This characteristic
is called as predictive maintenance. Virtual prototypes enforce consistent
remote control of corresponding physical prototypes, collecting data from a
variety of sources via sensors. The acquired data can be analysed to identify
potential difficulties, such as when a spare part is nearly worn out and has to
be replaced.

7.9 Quantum Computing

The fascination with quantum computing has grown tremendously in recent years.
New reports regarding breakthroughs in this subject are released on a regular basis
by research institutes, companies, and governments. Simultaneously, non-technical
pieces discuss the probable repercussions of quantum computing, which range from
cracking most current cryptographic techniques to a solution for complete general

56

Next Generation-Based AI for Software Development

AI. However, not all expectations are equally realistic. Apparently, we are several
years away from having production-ready quantum computer hardware.

However, the broad concepts are already established, and abstractions help
companies to use simulators to construct programmes that make use of quantum
computing. Using traditional computers, conventional software development turns
a high-level programming language (for example, Java) into processes on a huge
number of (hardware) transistors. Quantum computing may very likely be able to
tackle many problems that have previously been difficult to solve in practical terms.
Because of its numerous possible uses, quantum computing is currently influencing
most corporate sectors and research domains. Quantum algorithms must be explicitly
programmed for these vastly distinct processors in order for such applications to
become a reality. Despite the fact that several well-known quantum algorithms
already exist, the demand for quantum software will skyrocket in the coming years.
Quantum software must be generated in a more industrial and controlled manner
in this setting, which means that issues like quality, delivery, project management,
and quantum software evolution must be considered. We are confident that quantum
computing will be the driving force behind a new software engineering golden era
in the 2020s.

7.10 Quantum Machine Learning

Quantum computing’s development and future abilities are expected to hasten
improvements in existing computer paradigms, along with AI. Quantum machine
learning is an emerging topic that will build quantum algorithms to do complex
machine learning tasks. It is far more than just a conceptual combination of
technologies. While Intel, IBM, Google, along with other large technology companies
have lately made substantial advances in quantum computing, the technology still
faces a number of challenges (not all of which are technological) before becoming
a viable business resource. Machine learning and artificial intelligence (AI), as well
as verifying and validating increasingly complex software systems, are among the
computationally hard software engineering problems that the Department of Defense
(DoD) faces. Finding the best answer to these problems, termed as combinatorial
optimization problems, is non-deterministic polynomial hard and could take billions
of years to complete using traditional computer paradigms. They are using quantum
computing at the SEI’s Emerging Technology Center (ETC) to solve these DoD
mission-critical problems.

Our most recent project focuses on near-term quantum computing enabling
software validation and verification within the Department of Defense. The
integrated circuit computing paradigm has reached its fundamental limits since the
start of the post-Dennard scaling era and the end of Moore’s Law. Simultaneously,

57

Next Generation-Based AI for Software Development

the Department of Defense (DoD) requires a new computing paradigm to aid in
gaining a strategic advantage with machine learning and artificial intelligence (ML/
AI).”The Pentagon is especially fascinated by the potency of quantum computing to
grow secure communications and inertial navigation in GPS denied and contested
environments,” Michael Hayduk, chief of the communications and computing
division at the Air Force Research Laboratory, told the Defense Innovation Board
in July 2018. While we continue investigating these issues, we plan to expand our
research into other areas, such as quantum machine learning, which uses quantum
algorithms to conduct artificial intelligence and machine learning tasks. Researchers
are also working on quantum interactive proof systems, forming interactive proof
systems with QPUs, and validating and verifying quantum computation.

8. OPEN ISSUES AND CRITICAL CHALLENGES
TOWARDS ARTIFICIAL INTELLIGENCE
BASED SOFTWARE DEVELOPMENT

The majority of conventional, traditional software development environments adhere
to the standard steps of analysis, design, planning, quality assurance, development,
and deployment. The artificial intelligence development environment, on the other
hand, operates differently. The creation of AI projects and the development is
focused on identifying data sources, gathering data, cleaning it, and converting it
into insights. A distinct attitude and skill set are required for such an approach. This
unconventionality, which is woven throughout AI projects, brings with it a whole
new myriad of issues and solutions for overcoming AI development obstacles.

The work exposures have rendered a few factors appear to us:

i. We cannot anticipate our AI software development project to produce the same
results as a traditional product, because AI is more of a hit-or-miss game.

ii. When the entire team, not just the techies, is on board, we will be able to adopt
AI strategies and programmes more effectively in our company.

iii. The constraints of AI initiatives, like those of non-AI app projects, differ from
one idea to the next. However, some AI development issues and solutions are
shared by all products.

Now some other challenges towards AI based software development could be:

a) Integration challenges: Integrating or adding, Artificial Intelligence into any
current system is far more difficult than installing a browser plugin. There are
a number of interfaces and aspects that must be set up in order to meet our

58

Next Generation-Based AI for Software Development

company’s requirements. The team of data scientists evaluates our particular
data infrastructure demands, storage, data labelling and the processing of
feeding data into the system, such that business would not have to deal with
any startup AI app implementation issues. They additionally work on training
the model and evaluating the AI’s efficacy, creating a feedback mechanism
for refining the models based on human activities.

b) Infrastructure capabilities: For businesses to deploy AI solutions, they must
be able to handle data and compute it, as well as scale it, store it, extend it and
secure it. When deploying an AI solution, a company’s success begins with
determining how to fit its infrastructure environment is and how effectively
it supports AI applications and workloads. Unfortunately, the answer is also
one of the most critical enterprise AI challenges. When it comes to the third
lesson, there are challenges that are common to all products, regardless of
which principle underpins them. We ran into similar issues no matter whatever
application we were working on, so it’s safe to presume they’re common. To
instil a proactive mindset in data engineers, entrepreneurs have compiled a list
of the most typical concerns encountered when implementing AI development
services, as well as their perspectives on each artificial intelligence opportunity
and challenge.

c) Inefficient computing: Artificial intelligence necessitates the use of highly
efficient and advanced machinery and processing. Cloud computing appears
to be one option, but when we analyse current devices and software, it is clear
that this is insufficient. One of the first hurdles that Artificial Intelligence
technologies must overcome is this. Deep learning and Machine learning are
two AI approaches that necessitate top-notch calculation speeds. For these,
calculations must be performed at a microsecond or even nanosecond rate. In
some circumstances, the calculation speed may need to be less than nanoseconds.

d) Lack of Support: The development of AI software is hampered by this lack
of support. This is due to the fact that few people are aware of what artificial
intelligence is, and even fewer are aware of how to utilise a machine capable
of learning and thinking for itself. The rejection received from the public is
what prevents it from progressing and reaching new levels of growth. As a
result of the lack of demand from the public, there is no market for it, and as
a result, firms and organisations do not invest in AI. This is how it deals with
a lack of assistance.

e) Single-purpose specialization: Artificial intelligence is only been able to
fulfil a few particular purposes thus far. It works by reading and retaining the
inputs provided. However, it is restricted to improving only one task at a time.
Artificial intelligence that can execute any task like humans still have not been
achieved effectively. And enterprise mobility management necessitates this.

59

Next Generation-Based AI for Software Development

Although it might be created in the near future, it is currently unavailable on
the market.

f) Biasion of Algorithms: AI programmes often operate based on the training
they received from previous data. The issue develops when faulty data is
introduced and the AI application begins to operate based on it. As a result,
they must be trained upon unbiased data and create algorithms that are simple
to understand.

g) Scarcity of Data: Even though organisations and businesses have enormous
quantities of data, the data required for artificial intelligence is still insufficient.
Furthermore, the most effective artificial intelligence would be one that
undergoes supervised training, although this sort of training is based on labelled
data, which is increasingly scarce in reality. As a result, artificial intelligence
applications and machine learning systems that can accomplish more with fewer
data are required to be developed and created. Also, perhaps, over time, the
world would be able to generate sufficient data sets for Artificial Intelligence
and machine learning systems to operate on, which is uncommon in today’s
environment.

Hence, this section has discussed several critical issues and open challenges
towards AI based Software development. Now, next section will discuss several
future research opportunities towards the same.

9. FUTURE RESEARCH OPPORTUNITIES

The emerging developments in artificial intelligence and software engineering
are to model real-world objects such as expert knowledge, process models or
business processes, and areas of research such as knowledge-based systems, agent-
oriented software engineering, automated software engineering, and computational
intelligence, are becoming increasingly important in both fields. Business intelligence
is the practice of incorporating intelligence into software engineering processes,
resulting in software development process automation. Software engineering data
mining will aid in extracting important knowledge for identifying and selecting
possible candidates for reusing, including using artificial intelligence techniques
will aid in incorporating intelligence into the above-mentioned process. As a result,
the whole domain of software engineering operations including software reuse
will be automated. In businesses, Software Intelligence is referred to as Business
Intelligence (BI) since BI aids SI in the software industry. The field of software
intelligence can be researched for repurposing standard BI platforms for large-scale
adoption of BI infrastructures.

60

Next Generation-Based AI for Software Development

i. Language APIs are used by 55.9% of AI and machine learning developers,
preceded by speech APIs (51.1 per cent). For machine learning development and
AI, developers have traditionally relied on a variety of APIs. The prominence
of conversation and data discovery APIs is intriguing as demonstrates that
voice-activated assistants are today integral to mainstream machine learning
and AI software development.

ii. Today’s Machine Learning and AI app development are being slowed by a
lack of quality tools. The expense of resources, as well as a lack of requisite
skills or training, are the most important challenges that AI and machine
learning developers encounter in enhancing AI app development. Only 10% of
respondents are dealing with the difficulties of working with and integrating
legacy systems, indicating that AI and machine learning app development is
taking place in relatively young business units and development centres.

iii. When it comes to designing AI applications, the complexity of managing
operations is the greatest issue, according to 38% of AI developers. The
development of programmes that are portable across deployment contexts
is the second most critical problem. The third most difficult problem they
confront in developing excellent AI products is deciding on the correct AI
framework. Functions for different machine learning and deep learning
procedures and Libraries of mathematical expressions make up AI and machine
learning frameworks. They frequently offer a large number of APIs as well
as other development tools to aid developers in incorporating existing code
and leveraging business systems for the data required for training models and
creating the app.

iv. For hosting their AI, machine learning, and deep learning projects, the majority
of developers (54.9 percent) choose private cloud infrastructure. The public cloud
is used by 46% of respondents, while organizations’ on-premise infrastructure
is used by slightly over 51% of respondents. Numerous cloud service vendors
have constructed environments that include a variety of common AI tools,
such as machine learning or deep learning frameworks, data science-specific
IDEs, and machine learning notebooks.

10. SMART ERA WITH AI BASED SOFTWARE
DEVELOPMENT: AN OPEN DISCUSSION

The development of AI-influenced systems incorporating AI capabilities driven by
advancements in DL and ML has ushered in a new generation of AI in the software
industry. For example, AI has taken a number of critical applications reaching a
near-human degree of proficiency, such as autonomous vehicle navigation and speech

61

Next Generation-Based AI for Software Development

and picture recognition. Software systems with AI components are known as AI-
based systems. Such arrangements of systems learn via constantly understanding and
analysing their surroundings and responding in order to achieve intelligent behaviour.
The operation, development, and maintenance of AI-based systems differ from the
maintenance and development of traditional software systems. System behaviour
and rules are deduced from training data rather than being written down as code
in AI-based systems. The advancement of AI-based systems necessitates a focus
on changing and big datasets, an evolving and resilient infrastructure, as well as
equitable and ethical engineering. We may wind up with unsatisfactory AI-based
systems with technical debt if we don’t acknowledge these differences. Under this
perspective, it is necessary to investigate Software Engineering (SE) approaches for
the maintenance, evolution and development of AI-based systems.

10.1 Software 2.0

The most significant change is the shift toward systems that have no ties to traditional
coding at all. Neural networks and deep learning are examples of AI technologies that
turn traditional software processes on its head. Developers, for example, begin with
data instead of starting rather with rules — for an instance, enormous numbers of
games. Google used AlphaGo for training the systems of tens of thousands of human
games. The training data for the most recent version of AlphaGo Zero, comprised
games that the system played in opposition to itself, beginning with randomized
moves. This method has the potential to revolutionise software development as long
as the training data is explicit and sufficient, and the criteria for success or failure
are equally unambiguous.

Instead of attempting to decipher and code the game’s rules, developers must
now focus on success criteria and managing training data, leaving the actual
programming for the system. Andrej Karpathy, Tesla’s director of AI, says that’s
exactly the approach the company is adopting with its self-driving cars. Last year,
he declared in a keynote at a technology conference, “This is a totally new method
towards designing software.” “Rather than explicitly writing code, we are now
processing and accumulating data sets, which are effectively their code.” For an
instance, when driving through tunnels, Tesla’s windshield wipers had problems
determining when to switch on and off.

In the conventional days of software development, programmers would typically
read and analyse the code and check for flawed logic. Instead of looking at the code,
the engineers in Software 2.0 check the data. For example, there wasn’t sufficient
training set for vehicles travelling through tunnels. To deal with this shortcoming,
Tesla collected new data, label it, added it to the training data set, processed it and
executed the deep learning models again. However, as more businesses gravitate

62

Next Generation-Based AI for Software Development

towards AI for applications with a lot of data and low-code infrastructures for the
remainder, software development will undergo a significant transformation in the
near future.

10.2 Smart Application Development Platforms

For as long as there has been development, developers have been connecting systems.
Take, for example, Mendix, where the low-code approach is becoming even more
adaptive, allowing organisations to avoid spending time on constructing commodity
systems. For over a decade, the company has provided a building-block approach
for designing applications. Developers assemble together functionality from the
platform’s options and, when they aren’t adequate, link to external code to fill in the
gaps. Today, the company has developed its deep learning network to evaluate these
models, determine which ones have been the most successful, and detect patterns
dependent on those models. Even the less creative aspects of the design process,
which includes deciding on the best option for each stage, are prone to errors. As a
result, smart specialists can help improve the traditional design process. For example,
website construction platform Bookmark’s Artificial Intelligence Design Assistant
(AIDA) employs AI to evaluate users’ wants and then generates a particular website
for that sort of user. The system can choose from a myriad of combinations to design
the website’s look and feel focus, and other sections which could be customized.
AIDA can generate a first version of the pages in less than 2 minutes, after which
the design team can continue working on the website.

10.3 Developing Code

Whenever it comes to developing new code as from the ground up, today’s technology
leaves something to be desired. Microsoft’s Visual Studio, the most popular IDE,
now includes AI-assisted code completion in its current version. According to Mark
Wilson-Thomas, Microsoft’s senior product manager for Visual Studio IntelliCode,
the feature is built on machine learning from hundreds of open-source GitHub
sources. Amanda Silver, Microsoft’s partner director of programme management
for Visual Studio and Visual Studio Code, explains, “We extract the wisdom of the
open-source community’s code.” “In a current study of IntelliCode customers, more
than 70% said that the new AI-powered IntelliCode made them feel more productive
than the original IntelliSense,” she explains. The life of a developer entails more
than just creating decoupled, clean code that produces user-friendly, interactive
solutions. It also necessitates a significant amount of time, effort and resources
spent, troubleshooting, resolving errors and reading documentation. Developers
may immediately obtain feedback and ideas for improvement for the code they’ve

63

Next Generation-Based AI for Software Development

written owing to smart coding assistants and machine learning, which saves them
a lot more time. Python’s Kite and Java’s Codotaare two instances of such tools,
but Microsoft’s IntelliSense, which comes included with Visual Studio and is well
integrated, is perhaps the most well-known at the time. Another way machine learning
may help developers and businesses save time and money is through analysing the
code more quickly and correctly and finding possible refactoring areas. However,
identifying what typical patterns are good or harmful is where AI and ML may help
on the development side. It may draw attention to the fact that this is an abnormality,
allowing us to correct it later.

11. CONCLUSION

Artificial Intelligence, in combination with Machine Learning, Deep Learning, and
Natural Language Processing (NLP), has the potential to completely revolutionize
the process of software development. In layman’s terms, AI-assisted technologies
imitate human behaviour and do some routine tasks with extreme efficiency.
Software developers and testers are becoming more successful and productive as
AI and machine learning-powered technologies enable them to create high-quality
software solutions. AI and machine learning not only aid companies in developing
software, but also in understanding consumer behaviour, testing code, ensuring
code security, and determining strategic choices. In light of this, IT executives
must choose AI-powered tools and technologies to revolutionise their software
development processes.

Conflict of Intertest: The authors have declared that they do not have any conflict
of interest regarding publication of this work.

REFERENCES

Alhusain, S., Coupland, S., John, R., & Kavanagh, M. (2013). Towards machine
learning based design pattern recognition. In 2013 13th UK Workshop on
Computational Intelligence (UKCI). IEEE. 10.1109/UKCI.2013.6651312

Athavale, S., & Balaraman, V. (2013). Human behavioral modeling for enhanced
software Project Management. In 7th International Conference on Software
Engineering, (pp. 15–7). IEEE.

64

Next Generation-Based AI for Software Development

Boehm, B., & Sullivan, K. (2000). Software Economics: A Roadmap. .
doi:10.1145/336512.336584

Caldas, R. D., Rodrigues, A., Gil, E. B., Rodrigues, G. N., Vogel, T., & Pelliccione,
P. (2020). A hybrid approach combining control theory and AI for engineering self-
adaptive systems. In Proceedings of the IEEE/ACM 15th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, (pp. 9-19). IEEE.
10.1145/3387939.3391595

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P.
(2011). Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug), 2493–2537.

Fenton, N., Hearty, P., Neil, M., & Radlinski, L. (2010). Software project and
quality modelling using Bayesian networks. In Artificial intelligence applications
for improved software engineering development: New prospects (pp. 1–25). IGI
Global. doi:10.4018/978-1-60566-758-4.ch001

Filieri, A., Hoffmann, H., & Maggio, M. (2015). Automated multi-objective control
for self-adaptive software design. Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. 10.1145/2786805.2786833

Gao, H., Peng, Y., Jia, K., Wen, Z., & Li, H. (2015). Cyber-Physical Systems Testbed
Based on Cloud Computing and Software Defined Network. In 2015 International
Conference on Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP). IEEE. 10.1109/IIH-MSP.2015.50

Ghezzi, C., Jazayeri, M., & Mandrioli D. (2002). Fundamentals of software
engineering. Prentice Hall PTR.

Horn, G., Skrzypek, P., Materka, K., & Przeździȩk, T. (2019). Cost benefits of
multi-cloud deployment of dynamic computational intelligence applications. In
Workshops of the International Conference on Advanced Information Networking
and Applications, (pp. 1041-1054). Springer. 10.1007/978-3-030-15035-8_102

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: human-AI
symbiosis in organizational decision making. Business Horizons, 61(4), 577–586.
doi:10.1016/j.bushor.2018.03.007

Kakatkar, C., Bilgram, V., & Füller, J. (2020). Innovation analytics: Leveraging
artificial intelligence in the innovation process. Business Horizons, 63(2), 171–181.
doi:10.1016/j.bushor.2019.10.006

65

Next Generation-Based AI for Software Development

Laplante, P. A. (2000). Dictionary of computer science, Engineering and Technology.
CRC Press.

Leau, Y. B., Loo, W. K., Tham, W. Y., & Tan, S. F. (2012). Software development life
cycle AGILE vs traditional approaches. Int Conf Inf Netw Technol., 37(1), 162–167.

Mayhew, D. J. (1999). The usability engineering lifecycle. In CHI’99 Extended
Abstracts on Human Factors in Computing Systems (pp. 147–8). ACM.
doi:10.1145/632716.632805

Meinke, K., & Bennaceur, A. (2018). Machine learning for software engineering:
models, methods, and applications. In 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion). IEEE.
10.1145/3183440.3183461

Muenchaisri P. (2019). Literature reviews on applying artificial intelligence/machine
learning to software engineering research problems: preliminary. Academic Press.

Oliveto, R., Antoniol, G., Marcus, A., & Hayes, J. (2007). Software Artefact
Traceability: The Never-Ending Challenge. In 2007 IEEE International Conference
on Software Maintenance (pp. 485–488). IEEE. 10.1109/ICSM.2007.4362664

Padmanaban, P.H., & Sharma, Y.K. (2019). Implication of artificial intelligence in
software development life cycle: a state-of-the-art review. IJRRA.

Poole, D. L., & Mackworth, A. K. (2010). Artificial intelligence: foundations of
computational agents. Cambridge University Press. doi:10.1017/CBO9780511794797

Ramadan, R., & Widyani, Y. (2013). Game development life cycle guidelines. In
2013 International Conference on Advanced Computer Science and Information
Systems (ICACSIS). IEEE.

Ruparelia, N. B. (2010). Software development lifecycle models. Software
Engineering Notes, 35(3), 8–13. doi:10.1145/1764810.1764814

Savchenko, D., Kasurinen, J., & Taipale, O. (2019). Smart tools in software
engineering: a systematic mapping study. In 2019 42nd International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE. 10.23919/MIPRO.2019.8756975

Seffah, A., Gulliksen, J., & Desmarais, M. C. (2005). Human-centered software
engineering-integrating usability in the software development lifecycle (Vol. 8).
Luxemburg: Springer Science & Business Media.

66

Next Generation-Based AI for Software Development

Sorte, B.W., Joshi, P.P., & Jagtap, V. (2015). Use of artificial intelligence in software
development life cycle—a state of the art review. International Journal of Advanced
Engineering and Global Technology, 398–403.

Stylianou, C., & Andreou, A. S. (2016). Investigating the impact of developer
productivity, task interdependence type and communication overhead in a multi-
objective optimization approach for software project planning. Advances in
Engineering Software, 98, 79–96. doi:10.1016/j.advengsoft.2016.04.001

Van Hoorn, A., Frey, S., Goerigk, W., Hasselbring, W., Knoche, H., Köster, S.,
& Wittmüss, N. (2011). Lübeck: Dynamic analysis for model-driven software
modernization. DynaMod project.

Velmourougan, S., Dhavachelvan, P., Baskaran, R., & Ravikumar, B. (2014).
Software development life cycle model to build software applications with usability.
In 2014 International Conference on Advances in Computing, Communications and
Informatics (ICACCI). IEEE. 10.1109/ICACCI.2014.6968610

Zhang, H., Feng, M., Long, K., Karagiannidis, G. K., & Nallanathan, A. (2019).
Artificial intelligence-based resource allocation in ultradense networks: Applying
event-triggered Q-learning algorithms. IEEE Vehicular Technology Magazine, 14(4),
56–63. doi:10.1109/MVT.2019.2938328

Zhang, Y., Robinson, D. K., Porter, A. L., Zhu, D., Zhang, G., & Lu, J. (2016).
Technology roadmapping for competitive technical intelligence. Technological
Forecasting and Social Change, 110, 175–186. doi:10.1016/j.techfore.2015.11.029

